Так как 48 = 40 + 8, умножаем 40 х 4 = 160, затем прибавляем 8 х 4 = 32. Ответ будет 192. (Примечание: если вас интересует, почему этот прием работает, обратитесь к разделу «Почему эти приемы работают» в конце данной главы.)
Вот еще две задачи для устного умножения, которые решаются достаточно быстро. Сначала вычислите 62 х 3. Затем 71 х 9. Попытайтесь выполнить все в уме, прежде чем посмотрите, как это сделали мы.
Эти два примера достаточно просты, потому что сумма складываемых чисел меньше 10. Выполняя действие 180 + 6, вы можете слышать ответ: сто восемьдесят… шесть! Есть еще один простой способ устного умножения, при условии что двузначное число начинается на пять. Когда пять умножается на четную цифру, первое число получается кратным 100, что делает итоговую задачу на сложение особенно простой.
Попрактикуйтесь на следующем примере.
Обратите внимание, насколько легче решать его слева направо. Требуется намного меньше времени, чтобы сложить 400 плюс 35 в уме, чем понадобилось бы для применения метода «карандаш и бумага» и «5 пишем, 3 в уме».
Следующие два примера немного сложнее.
Как обычно, разбиваем задачу на подзадачи. В первом примере умножаем 30 х 9 и 8 х 9, в итоге суммируем 270 + 72.
Задача на сложение немного сложнее, потому что включает в себя запоминание чисел. Вот как это делается: 270 + 70 + 2 = 340 + 2 = 342.
Практикуясь, вы станете легко решать задачи, подобные этой. И те из них, которые требуют запоминания чисел, покажутся почти такими же легкими, как и не требующие этого.
Округление
В предыдущей главе вы убедились, насколько полезно округление при выполнении вычитания. Та же история и с умножением, особенно для чисел, заканчивающихся на 8 или 9.
Рассмотрим пример 69 х 6, показанный ниже. Слева представлено вычисление обычным способом: складываем 360 + 54.
Справа мы округлили 69 до 70 и вычли из 420 — 6, что нам показалось более простым действием.
Следующий пример также демонстрирует, насколько округление облегчает вычисления.
Метод вычитания особенно хорошо работает для чисел, в которых надо округлять до кратной 10 одну или две цифры. Однако он не так хорош, когда округлять приходится больше двух цифр, потому что тогда сама задача на вычитание усложняется. В этом случае можно продолжать придерживаться метода сложения. Лично я для таких задач использую только его, потому что за время, потраченное на выбор метода, уже могу все посчитать!
Если вы хотите усовершенствовать технику, то следует больше практиковаться на задачах типа «2 на 1». Ниже представлены 20 примеров, на которых вы можете потренироваться. Ответы даны в конце книги, включая разбивку на отдельные действия для всего процесса умножения. Если после разбора каждого примера вы захотите попрактиковаться еще, то просто составьте собственные примеры. Считайте в уме, затем сверяйте ответ с калькулятором. Как только почувствуете, что научились быстро выполнять такие задачки в уме, можете переходить на следующий уровень устных вычислений.
ЗАДАЧИ НА УМНОЖЕНИЕ ТИПА «3 НА 1»
Теперь, когда вы умеете в уме решать задачи типа «2 на 1», умножение трехзначных чисел на однозначные не покажется вам более сложным. Вы можете начать со следующего примера типа «3 на 1» (который на самом деле представляет собой замаскированную задачку типа «2 на 1»).
Было ли это легко? (Если этот пример показался трудным, вам следует повторить материал по сложению из главы 1.)
Попробуем решить еще одну задачу «3 на 1», подобную верхней, но заменим в ней 0 на 6, чтобы у вас появилось еще одно действие для выполнения:
В данном случае вы просто прибавляете результат умножения 6 х 7, то есть 42, к первой сумме 2240. Так как здесь не нужно запоминать никаких чисел, будет легко сложить 42 и 2240 и получить в итоге 2282.
При решении этой и других задач типа «3 на 1» камнем преткновения может стать удержание в памяти первой суммы (в этом примере число 2240), в то время как вы заняты умножением (здесь 6 х 7). Нет какого-либо магического секрета для запоминания первого числа, но я уверяю вас, что по мере освоения метода концентрация внимания улучшится, и держать числа в памяти, выполняя параллельно другие операции, станет для вас привычным делом.
Решим еще одну задачу.
Даже если числа большие, сам процесс умножения прост.
Например:
Впервые решая такие задачки, вы должны поглядывать на записи, чтобы напоминать себе начальные условия. Поначалу это нормально. Но со временем попытайтесь избавиться от такой привычки, чтобы научиться держать в памяти всю задачу.
В разделе об умножении типа «2 на 1» мы видели, что примеры, где числа начинаются на пятерку, особенно легкие в решении. То же верно и для задач типа «3 на 1».
Обратите внимание, что всякий раз, когда первый результат умножения получается кратным 1000, следующее действие на сложение уже вовсе не является задачей. Так происходит потому, что вам не нужно запоминать никаких чисел и в дальнейшем порядковый номер тысячи не изменится. Если бы вы решали эту задачу перед кем-то, то могли бы сказать вслух «три тысячи…» с абсолютной уверенностью в том, что это число не превратится в ответе в 4 тысячи. (И в придачу, называя первые цифры, вы создаете иллюзию, будто мгновенно вычислили ответ!) Но даже если вы тренируетесь в одиночестве, проговаривание вслух первых результатов вычисления освобождает часть оперативной памяти, необходимой для продолжения работы над оставшимися действиями для решения задачи типа «2 на 1», ответ на которую вы тоже можете произнести вслух, например, «…триста семьдесят восемь».
Попробуйте данный подход при решении следующей задачи, где множителем выступает 5.
Так как первые две цифры трехзначного числа одинаковые, вы можете произносить ответ параллельно с вычислениями даже без необходимости складывать что-либо! Правда, было бы здорово, если бы все задачки на умножение были такими легкими?
Поднимемся на новый уровень сложности и попробуем решить пару примеров, которые потребуют от нас удержания чисел в уме.
В следующих двух примерах вам нужно держать числа в уме на последнем этапе решения, а не в его начале.
Первое действие для каждой задачи легко выполнить в уме. Сложности возникают при необходимости удерживать в памяти предварительный ответ, параллельно вычисляя итоговый. В первой задаче легко сложить 5400 + 360 = 5760. Но вы будете вынуждены твердить «5760» самому себе, пока умножаете 8 х 9 = 72. Затем надо сложить 5760 и 72. Иногда на этой стадии я начинаю проговаривать ответ вслух еще до ее завершения. Я знаю, что нужно будет держать числа в уме, когда я буду складывать 60 + 72, но я также знаю, что 5700 станет 5800.
Я говорю: «Пять тысяч восемьсот…», затем приостанавливаюсь для сложения 60 + 72 = 132. Поскольку я уже держу числа в уме, я произношу только последние две цифры: «… тридцать два!» А вот и ответ: 5832.
Две следующие задачи потребуют от вас держать в уме два числа, так что их решение может занять больше времени. Но, потренировавшись, вы станете делать это быстрее.
Когда вы впервые принимаетесь за решение таких примеров, повторяйте ответы для каждого действия вслух, параллельно вычисляя остальное. В первой задаче, например, начните с «две тысячи восемьсот плюс пятьсот шестьдесят», проговорив пару раз все это вслух и тем самым закрепив два числа в памяти, пока складываете их. Повторите ответ «три тысячи триста шестьдесят» несколько раз, пока умножаете 9 х 7 = 63. После проговаривайте «три тысячи триста шестьдесят плюс шестьдесят три» вслух до тех пор, пока не вычислите итоговый ответ 3423. Если вы достаточно быстро соображаете, чтобы распознать, что сложение 60 + 63 потребует переноса 1 в старший разряд, то вы в состоянии назвать итоговый ответ на долю секунды быстрее, чем сами это осознаете: «три тысячи четыреста и… двадцать три!»
Завершим раздел с задачами на умножение типа «3 на 1» рядом особых примеров, которые можно мгновенно решить, так как они требуют лишь одного действия на сложение вместо двух.
В общем, если результат умножения последних двух цифр первого числа на его множитель известен вам и без подсчетов (например, вы знаете, что 25 х 8 = 200), то вы сможете получить итоговый ответ намного быстрее. Например, если вы и так знаете, что 75 х 4 = 300, то легко вычислите 975 х 4.
Вот еще две задачи для устного умножения, которые решаются достаточно быстро. Сначала вычислите 62 х 3. Затем 71 х 9. Попытайтесь выполнить все в уме, прежде чем посмотрите, как это сделали мы.
Эти два примера достаточно просты, потому что сумма складываемых чисел меньше 10. Выполняя действие 180 + 6, вы можете слышать ответ: сто восемьдесят… шесть! Есть еще один простой способ устного умножения, при условии что двузначное число начинается на пять. Когда пять умножается на четную цифру, первое число получается кратным 100, что делает итоговую задачу на сложение особенно простой.
Попрактикуйтесь на следующем примере.
Обратите внимание, насколько легче решать его слева направо. Требуется намного меньше времени, чтобы сложить 400 плюс 35 в уме, чем понадобилось бы для применения метода «карандаш и бумага» и «5 пишем, 3 в уме».
Следующие два примера немного сложнее.
Как обычно, разбиваем задачу на подзадачи. В первом примере умножаем 30 х 9 и 8 х 9, в итоге суммируем 270 + 72.
Задача на сложение немного сложнее, потому что включает в себя запоминание чисел. Вот как это делается: 270 + 70 + 2 = 340 + 2 = 342.
Практикуясь, вы станете легко решать задачи, подобные этой. И те из них, которые требуют запоминания чисел, покажутся почти такими же легкими, как и не требующие этого.
Округление
В предыдущей главе вы убедились, насколько полезно округление при выполнении вычитания. Та же история и с умножением, особенно для чисел, заканчивающихся на 8 или 9.
Рассмотрим пример 69 х 6, показанный ниже. Слева представлено вычисление обычным способом: складываем 360 + 54.
Справа мы округлили 69 до 70 и вычли из 420 — 6, что нам показалось более простым действием.
Следующий пример также демонстрирует, насколько округление облегчает вычисления.
Метод вычитания особенно хорошо работает для чисел, в которых надо округлять до кратной 10 одну или две цифры. Однако он не так хорош, когда округлять приходится больше двух цифр, потому что тогда сама задача на вычитание усложняется. В этом случае можно продолжать придерживаться метода сложения. Лично я для таких задач использую только его, потому что за время, потраченное на выбор метода, уже могу все посчитать!
Если вы хотите усовершенствовать технику, то следует больше практиковаться на задачах типа «2 на 1». Ниже представлены 20 примеров, на которых вы можете потренироваться. Ответы даны в конце книги, включая разбивку на отдельные действия для всего процесса умножения. Если после разбора каждого примера вы захотите попрактиковаться еще, то просто составьте собственные примеры. Считайте в уме, затем сверяйте ответ с калькулятором. Как только почувствуете, что научились быстро выполнять такие задачки в уме, можете переходить на следующий уровень устных вычислений.
ЗАДАЧИ НА УМНОЖЕНИЕ ТИПА «3 НА 1»
Теперь, когда вы умеете в уме решать задачи типа «2 на 1», умножение трехзначных чисел на однозначные не покажется вам более сложным. Вы можете начать со следующего примера типа «3 на 1» (который на самом деле представляет собой замаскированную задачку типа «2 на 1»).
Было ли это легко? (Если этот пример показался трудным, вам следует повторить материал по сложению из главы 1.)
Попробуем решить еще одну задачу «3 на 1», подобную верхней, но заменим в ней 0 на 6, чтобы у вас появилось еще одно действие для выполнения:
В данном случае вы просто прибавляете результат умножения 6 х 7, то есть 42, к первой сумме 2240. Так как здесь не нужно запоминать никаких чисел, будет легко сложить 42 и 2240 и получить в итоге 2282.
При решении этой и других задач типа «3 на 1» камнем преткновения может стать удержание в памяти первой суммы (в этом примере число 2240), в то время как вы заняты умножением (здесь 6 х 7). Нет какого-либо магического секрета для запоминания первого числа, но я уверяю вас, что по мере освоения метода концентрация внимания улучшится, и держать числа в памяти, выполняя параллельно другие операции, станет для вас привычным делом.
Решим еще одну задачу.
Даже если числа большие, сам процесс умножения прост.
Например:
Впервые решая такие задачки, вы должны поглядывать на записи, чтобы напоминать себе начальные условия. Поначалу это нормально. Но со временем попытайтесь избавиться от такой привычки, чтобы научиться держать в памяти всю задачу.
В разделе об умножении типа «2 на 1» мы видели, что примеры, где числа начинаются на пятерку, особенно легкие в решении. То же верно и для задач типа «3 на 1».
Обратите внимание, что всякий раз, когда первый результат умножения получается кратным 1000, следующее действие на сложение уже вовсе не является задачей. Так происходит потому, что вам не нужно запоминать никаких чисел и в дальнейшем порядковый номер тысячи не изменится. Если бы вы решали эту задачу перед кем-то, то могли бы сказать вслух «три тысячи…» с абсолютной уверенностью в том, что это число не превратится в ответе в 4 тысячи. (И в придачу, называя первые цифры, вы создаете иллюзию, будто мгновенно вычислили ответ!) Но даже если вы тренируетесь в одиночестве, проговаривание вслух первых результатов вычисления освобождает часть оперативной памяти, необходимой для продолжения работы над оставшимися действиями для решения задачи типа «2 на 1», ответ на которую вы тоже можете произнести вслух, например, «…триста семьдесят восемь».
Попробуйте данный подход при решении следующей задачи, где множителем выступает 5.
Так как первые две цифры трехзначного числа одинаковые, вы можете произносить ответ параллельно с вычислениями даже без необходимости складывать что-либо! Правда, было бы здорово, если бы все задачки на умножение были такими легкими?
Поднимемся на новый уровень сложности и попробуем решить пару примеров, которые потребуют от нас удержания чисел в уме.
В следующих двух примерах вам нужно держать числа в уме на последнем этапе решения, а не в его начале.
Первое действие для каждой задачи легко выполнить в уме. Сложности возникают при необходимости удерживать в памяти предварительный ответ, параллельно вычисляя итоговый. В первой задаче легко сложить 5400 + 360 = 5760. Но вы будете вынуждены твердить «5760» самому себе, пока умножаете 8 х 9 = 72. Затем надо сложить 5760 и 72. Иногда на этой стадии я начинаю проговаривать ответ вслух еще до ее завершения. Я знаю, что нужно будет держать числа в уме, когда я буду складывать 60 + 72, но я также знаю, что 5700 станет 5800.
Я говорю: «Пять тысяч восемьсот…», затем приостанавливаюсь для сложения 60 + 72 = 132. Поскольку я уже держу числа в уме, я произношу только последние две цифры: «… тридцать два!» А вот и ответ: 5832.
Две следующие задачи потребуют от вас держать в уме два числа, так что их решение может занять больше времени. Но, потренировавшись, вы станете делать это быстрее.
Когда вы впервые принимаетесь за решение таких примеров, повторяйте ответы для каждого действия вслух, параллельно вычисляя остальное. В первой задаче, например, начните с «две тысячи восемьсот плюс пятьсот шестьдесят», проговорив пару раз все это вслух и тем самым закрепив два числа в памяти, пока складываете их. Повторите ответ «три тысячи триста шестьдесят» несколько раз, пока умножаете 9 х 7 = 63. После проговаривайте «три тысячи триста шестьдесят плюс шестьдесят три» вслух до тех пор, пока не вычислите итоговый ответ 3423. Если вы достаточно быстро соображаете, чтобы распознать, что сложение 60 + 63 потребует переноса 1 в старший разряд, то вы в состоянии назвать итоговый ответ на долю секунды быстрее, чем сами это осознаете: «три тысячи четыреста и… двадцать три!»
Завершим раздел с задачами на умножение типа «3 на 1» рядом особых примеров, которые можно мгновенно решить, так как они требуют лишь одного действия на сложение вместо двух.
В общем, если результат умножения последних двух цифр первого числа на его множитель известен вам и без подсчетов (например, вы знаете, что 25 х 8 = 200), то вы сможете получить итоговый ответ намного быстрее. Например, если вы и так знаете, что 75 х 4 = 300, то легко вычислите 975 х 4.